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Abstract— We have developed a new fuzzy filter for the noise reduction in images having the additive noise. Our proposed filter works in 
two stages. The first stage of our filter computes the fuzzy derivatives for eight different directions. And the second stage of our filter utilizes 
these fuzzy derivatives to do fuzzy smoothing by taking weightage of the contributions of neighboring pixels. Both of the stages uses fuzzy 
rules which takes help of membership functions. This filter could be used many times iteratively to give more better results. While filtering, 
the membership functions are altered according to the amount of noise present in an image after every iteration. This is done by using the 
homogeneity in the image. 

Index Terms— Additive noise, fuzzy filter, noise detection and removal, homogeneity. 

——————————      —————————— 

1 INTRODUCTION                                                                     
he fuzzy techniques application in image processing has 
been a good research field [1]. In many domains fuzzy 
techniques are already in use like for example filtering, 

interpolation [2], and morphing [3], etc. It also has many 
applications in industrial and medical images and their 
processing [5], [6]. 
Here, we are focusing on techniques of image filtration using 
fuzzy technique. Although many fuzzy filters for noise removal 
has been implemented like for example the FIRE-filter [7], [8], [9], 
the weighted fuzzy mean filter [10], [11], and the iterative fuzzy 
control based filter [12]. Here most the implemented fuzzy filters 
works on fat-tailed noises like impulse noise. These filters are 
capable to outperform filters like median filter but yet these are 
not particularly designed for Gaussian noises. 
Hence, in this paper, we are presenting a technique for filtering 
noises like narrow tailed and medium narrow tailed noises by 
the use of fuzzy filter. We have introduced two features, first one 
is that the filter calculates a “fuzzy derivative” so that it can be 
less delicate to local variations which happens due to structures 
such as an edge, etc. The second feature is that the membership 
functions that we are using are changed according to the amount 
of noise present to apply “fuzzy smoothing”. 
The development of our fuzzy filter is explained later. For every 
pixel in the image being processed, the first part calculates the 
fuzzy derivate and then a set of 16 fuzzy rules are applied to find 
a correction term. These can use fuzzy derivative as input. After 
that Fuzzy sets are used to depict the properties small, positive 
and negative. We have fixed membership functions for positive 
and negative, but for small, the membership function is changed 
after every iteration. This scheme is also explained later in the 
paper. The results obtained are then compared to few already 
existing filters and conclusions were drawn. 

2 FUZZY FILTER 
The idea behind our filter is that to average a pixel’s value using 
other pixel’s values from its neighbors, and at the same time to 
take care of structures like edges. The main focus of our 
proposed filter is to differentiate between local variations 
because of noise and because of image structures like edge. 

For doing this, for every pixel we find a value that shows the 
amount in which the derivative in a direction is small. That value 
is found for every direction corresponding to neighbor pixels of 
the pixel in focus by a fuzzy rule. 
The later construction of the filter is based upon the observation 
which is that a small fuzzy derivative is very much likely to 
happen due to noise and a large fuzzy derivative is likely to 
happen due to an edge present in an image. Therefore, for every 
direction we apply two fuzzy rules that uses this remark, and 
which signifies the contribution of neighbor pixels. 
The result of these 16 rules is defuzzified and a “correction term” 
is acquired for the pixel being processed. 
 
2.1 Fuzzy Derivative Estimation 
Finding derivatives and filtering are dependent on each other. 
For filtering we need to find edges and to detect edges we need 
good filtering. 
We start by checking for edges in the images. We have tried to 
get a strong estimate by using fuzzy rules. 
Taking the 3x3 neighbor of a pixel say (x, y) as shown in Fig. 1(a). 
A simple derivative at the center pixel (x, y) in the direction of D 
(D comprises of {NW, W, SW, S, SE, E, NE, N}) is explained as 
the difference between the pixel (x, y) and its neighbor in the 
direction D. This derivative is denoted by ∇D(x, y). For example 

∇N(x, y) = I(x, y-1) - I(x, y) 
                   ∇NW(x, y) = I(x-1, y-1) – I(x, y).                  (1) 

Then, the principle of this fuzzy derivative is established on the 
following observation. Let an edge be passing through the pixel 
(x, y) in the SW – NE direction. The value of the derivative 
∇NW(x, y) will be high, but derivative values of neighbor pixels 
which are perpendicular to the edge’s direction will be large too. 
For example, in the direction of NW, we can find the values 
∇NW(x, y), ∇NW(x-1, y+1) and ∇NW(x+1, y-1). Our idea is to 
eliminate the effect of one derivative value which can turn out to 
be high due to presence of the noise. Hence, if two out of the 
three derivatives are small, then we can assume that no edge is 
there in the considered direction. This study will be considered 
when we devise the fuzzy rule to find values of fuzzy derivative. 
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Fig. 1. (a) Neighbour of a central pixel (x, y). (b) Pixel values shown in grey 
are used to calculate the “fuzzy derivative” of the centre pixel (x, y) for the 
NW-direction. 
 
TABLE I 
Pixels required to find the fuzzy derivative in each direction 

 
 
In Table I, we have shown an overview of the pixels that we 
used to find the fuzzy derivative for every direction. Every direc-
tion in column 1 corresponds to a fixed position in column 2. The 
sets shown in column 3 specifies which pixels are to be taken 
with respect to center pixel (x, y).  
To find the value that could express the extent to which the 
fuzzy derivative in a particular direction is small, then we will 
make use of small fuzzy set. 
The membership function being denoted by mk(u) for the prop-
erty small as shown in Fig. 2(a) is given below- 
 

 

(a) 
 

 
(b) 
 

 
(c) 

Fig. 2. Membership functions (a) small, (b) positive, and (c) negative. 
 

The membership function being denoted by mk(u) for the 
property small as shown in Fig. 2(a) is given below- 

               (2) 

Where k is an adaptive parameter. 
For example, the fuzzy derivative value ∇FNW(x, y) for the pixel 
(x, y) in the direction of NW is found by applying the rule show 
below- 

If (∇NW(x, y) is small and ∇NW(x-1, y+1) is small) or 
    (∇NW(x, y) is small and ∇NW(x+1, y-1) is small) or 
    (∇NW(x-1, y+1) is small and ∇NW(x+1, y-1) is small) 
Then ∇FNW(x, y) is small.   (3) 

Eight rules like above are applied, each one of them computing 
the extent of membership of the fuzzy derivatives ∇FD(x, y), D ∈ 
dir, to the set small. All these rules are applied by using the 
minimum to represent the AND-operator, and the maximum is 
used for the OR-operator. A defuzzification is not required here 
as the second stage which is the “fuzzy smoothing”, directly 
utilizes the membership degree to small. 
The robustness that we have tried to achieve by this fuzzy 
derivative is by integrating multiple derivatives around a pixel 
and by making the K parameter as adaptive. The proper choice 
of parameter K is explained later. 

2.2 Fuzzy Smoothing 
For computation of correction term for each processed pixel, 
fuzzy rules are applied in each direction corresponding to the 
pixel. The general idea used is; if in a certain direction there 
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Fig. 3.  Relationship between the homogeneity μ and the noise level σ empiri-
cally measured by patches of size 9 x 9 (N = 9). The accuracy of σ is shown 
by the standard deviation of  σ itself. 
 
is no edge (assumption) then derivative value is used to compute 
correction term. The edge assumption is accomplished using 
fuzzy derivative value. For correction term computation we 
need to determine positive and negative values. 
For example, for direction say NW, using fuzzy derivative value 
for that direction; ∇FNW(x, y) and derivative value ∇NW(x, y) 
following two rule are applied and henceforth their truthiness 
λ+NW and λ-NW. 
λ+NW :  If  ∇FNW(x, y) is small and ∇NW(x, y) is positive then c 
is positive 
λ-NW : If ∇FNW(x, y) is small and ∇NW(x, y) is negative then c 
is negative. 
Next for each direction, linear membership functions (fig 2(b) 
and 2(c)) are used for positive and negative properties to 
implement the AND–operator and OR-operator by respectively 
the minimum and maximum. 
Final step was defuzzification because we aimed at finding 
correction term ∆ which can be added to the respective pixel. 
Hence the truthiness of rules λ+D and λ-D, D is direction are 
aggregated by computing and rescaling the mean truthiness as 
follows: 

                 (4) 
where D represents all directions and L ,the number of gray 
levels. As a result each directions contribute to correction term ∆. 

3 ADAPTIVE THRESHOLD SELECTION 
Instead of using lager windows for heavier noise to obtain 
desired result, we preferred applying filter iteratively. The shape 
of membership function small is acquired after each iteration 
depending on the estimate of remaining noise. The method 
assumes that a percentage p of image is homogeneous and can 
be used to get noise density.  
At start we divide the whole image into N X N blocks and then 
for each block a rough measure for homogeneity is considered 
by using maximum and minimum pixel value. 

                     (5) 

 
(a) 

 

 
(b) 

Fig. 4. Original test images. (a) “Cameraman.” (b) “Boats.” 
 
This measure is generally used for fuzzy image processing [13].  
Next, homogeneity value is computed and the presumption: 
percentile p of the most homogeneous block is computed. From 
statistical model it can be deduced that there is a linear 
relationship between homogeneity and standard deviation. 
Assume M independent identically distributed noise samples 
with fX (x; σ) as probability density function and FX(x; σ) as 
cumulative density function. As PDF rescales with change in 
standard deviation, the maximum minimum of these samples 
are scaled same way. This helps in establishing linear 
relationship between homogeneity and standard deviation. This 
can also be derived formally; assume expectation value E[X] be 
zero, and variance E[X2] to be σ2. If PDF is scaled with a factor α, 
results: 

                                          (6) 

                                                (7)  
Minimum and maximum of these M samples can be defined as: 
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(a) 

 
(b) 

Fig. 6. MSE (mean squared error) for (a) “cameraman” and (b) “boats.” (σ = 
5). 
 
for which CDFs can be derived as  
 

 
 

 
From (6) and (7) scaling of E[Xmax] and E[Xmin] according to α 
can be show as 
 

 
 

 
Therefore, relationship between homogeneity can be expressed 
as 

                                             (8) 
Where ɣM is slope. 

 
The value of ɣM is computed empirically. A large number of 
blocks are generated and each block consist of expected 
distribution. The effective noise level for each block is computed. 
The mean value and standard deviation are computed for entire 
test set. This activity is conducted for several noise levels. Fig 3 
shows the outcome for N=9 and 200 experiments. The errors bar 
shows standard deviation on noise level. This experiment is 
done for Gaussian noise, Laplacian noise, and uniform noise. 

 
(a) 

 
 

(b) 
Fig. 7. MSE (mean squared error) for (a) “cameraman” and (b) “boats.” (σ = 
20.) 
 
Next using the assumption that at least a percentage p blocks 
were originally homogeneous. The histogram of homogeneity of 
every block is computed. The value μP of this is related to noise 
variance σ using the linear relationship. A final amplification 
factor (discussed later) is used to get the parameter. 

   
                            ɣN2                       (9) 
 

This is applied every time before each iteration to obtain 
parameter K, to determine shape of membership function small. 
This helps in differentiating between blocks containing both im-
age and blocks containing only noise. This is achieved by sorting 
histogram on homogeneity values. As a result, noise variance is 
on smooth blocks only, if initial hypothesis remains true. 

4 RESULTS 
After adding Gaussian noise of different levels to PGM image, 
the proposed filter is applied to it. This helps in comparing and 
evaluating filtered image against original image. Fig. 4 shows 
test images: “cameraman” and “boats”. 
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(a) 

 
(b) 

Fig. 8. Parameter K for “boats.” (a) σ = 5. (b) σ = 20. 
 

 
                              (a)                                                     (b)                                                               

 
                               (c)                                                    (d) 
Fig. 9. (a) “Cameraman” with additive gaussian noise (σ = 5). (b) After Wiener 
filtering (3x3). (c) After fuzzy mean (FM). (d) After proposed fuzzy filter (σ = 1). 

  
                      (a)                                                              (b) 

 
               (c)                                                               (d) 

Fig. 10. Detail images of the results of Fig. 9. 
 

 
                          (a)                                                        (b) 

 
                          (c)                                                        (d) 
Fig. 11. (a) “Boats” with additive gaussian noise (σ = 20). (b) After Wiener 
filtering (3x3). (c) After AWFM2. (d) After proposed fuzzy filter (σ = 2). 
 
Fig. 5 shows normalized histogram of homogeneity of 
“cameraman” for both original and corrupted image with 
different noise levels, i.e., σ =5, σ =10 and σ =20. Using 20 %  
percentile and (8), the noise levels are respectively, 5.2, 9.4, and 
17.7. Our filter is applied to these noise levels using different 
values of amplification factor α (α=1.0-3.0). To evaluate results, 
for both original and filtered image, the mean squared error 
(MSE) is computed. 
Fig. 6 and 7 depicts plot of MSE as function of number of 
iterations for image containing noise with σ=5 and σ=20. 
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                          (a)                                                       (b) 

 
                           (c)                                                     (d) 
Fig. 12. Detail images of Fig. 11. 
 
It can be noticed that one iteration is sufficient to remove low 
noise levels (Fig. 6). Also, low amplification factor α gives better 
results. The MSE of “cameraman” unexpectedly increases with 
increasing number of iterations, this is mainly due to its content. 
i.e.; the grass is close to noise and gets filtered. This increase is 
not observed in other image such as “boats”. So, image with low 
noise levels needs to be treated carefully. 
For high noise levels (Fig. 7), results are much more stable. A low 
number of iteration only efficiently removes noise. Also higher 
value α produces better results.  
Fig. 8 shows parameter K that depends on remaining noise level 
σ for “boats” test image. Based on application’s acceptable noise 
level, we could use σ estimate as stop criterion. Also, a change K 
with respect to previous iteration is small. Smoothing is affected 
by change in parameter α. MSE-curves shows α can be 
computed using σ estimate. Noise levels are directly 
proportional to factor α, i.e., a high value of noise levels gives 
high value of α. 
Results of different filters: the mean filter, the adaptive Weiner 
filter [14], fuzzy median (FM) [15], the adaptive weighted fuzzy 
mean filter (AWFM1 and AWFM2) [10], [11], the iterative fuzzy 
filter (MIFC), and extended iterative fuzzy filter (EIFC) [12]. 
Observing Fig. 9 and 10 shows that our filter preserves certain 
details better like grass, background. It can be noted that our 
filter preserves grass better than fuzzy mean filter. 
The image of “boats” gives a different result. For low levels of 
noise (σ=5), our proposed filter performs well, but for higher 
levels of noise, AWFM2 filter gives better results. Fig.11 de-
scribes the filtered images. The detailed images of Fig.12 shows 
that the filter AWFM2 did preserved small minute details such 
as narrow ropes where our proposed filter gives more natural 
image without having the patches of the adaptive Wiener filter.  

5 CONCLUSION 
This paper showed a fuzzy filter for additive noise removal. Us-
ing the fuzzy derivative estimation it distinguishes between local 
variations and structures like edges. Fuzzy rules are used to con-
sider all directions around the pixel which is being processed. 
Also, membership function’s shape changes and adapts accord-
ing to amount of noise present after each iteration. Experimental 
results describes how much our filter is feasible. Numerical 
measure like MSE and observing visually we have obtained 
good results. Hence, our proposed filter is sufficiently simple to 
enable fast implementations. 
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